

DecarbonyT-Collaborative efforts towards a greener fishing industry in the Mediterranean and Black Sea

Presenter: Valentina Ceballos

Project Officer at WWF Mediterranean

Partnership: Sala, A., Accadia P., Adamidou, A., Barbetti, L., Besbes, M.K., Bitetto I., Buzzi, A., Carbonara, P., Casini, M., Ceballos, V., Cerdà, M., Coll, M., Conides, A., Costantini, M., Damalas, D., Danilov, C.S., De Carlo, F., Dimitrov, D., Ferrà, C., Galea, J., Geraci, M.L., Guijarro, B., Koutrakis, E., Isajlović, I., Liontakis, A., Li Veli, D., Lucchetti, A., Mangano, M.C., Mantas, G.D., Maravelias, C., Medvesek D., Mytilineou, C., Neglia, C., Notti, E., Ordinas, F., Ortega, Petetta, A., Raykov, V., Rinalduzzi, S., Rosini, A., Russo, T., Sbrana, M., Scarcella, G., Stagioni, M., Tassetti, A.N., Tiganov, G., Touloumis, K., Vianson, G., Vitale, S., Vrgoc, N., Zlateva, I.

Overview of the DecarbonyT project

Project management and scientific coordination (Antonello Sala)

Review of the state of play (Tommaso Russo)

Pilot project for improved fishing gears development and testing at sea (Antonello Sala / Beatriz Guijarro)

Socio-economic analysis and conclusions from gear testing (Paolo Accadia)

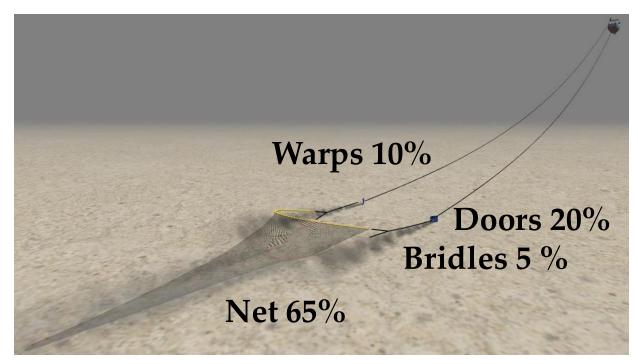
Dissemination and stakeholder engagement (Marco Costantini / Valentina Ceballos)

Decarbonisation of the fishing fleet in the Mediterranean and Black Sea

Project website

https://www.decarbonyt.eu

DecarbonyT-Collaborative efforts towards a greener fishing industry in the Mediterranean and Black Sea



Presentation Overview

- 1) Pilot studies for fuel saving trawling gears
- 2) Energy audits
- 3) Development of low impact and fuel-efficient gears
- 4) Methodological framework and instrumentation

Gear drag significantly impacts fuel consumption

Source: modified and adapted from Fiorentini and Hansen (1995), Sala et al. (2008).

- Sala *et al.* (2008): replacement of knotless polyamide netting sections in the wings with knotted *Rubitech* panels and redesigning the trawl wings: energy saving of 30% while maintaining the same engine power.
- Novel otterboard designs to reduce hydrodynamic drag coefficient and seabed impact (Sala *et al.*, 2010; 2023): fuel savings of up to 15-20%.

Pilot studies defined by gear and area combinations

Pilot	Gear (Area)	Leader	Partners	Topic(s)	Power[kW]	Depth [m]	Target species
1	OTB Western Mediterranean (GSA1-7)	Francesc Ordines	IEO-CSIC, CNR	Shift to midwater doors, fuel-saving net design, including sweeps reduction, elimination of bridles, lower vertical opening, hydrodynamic floats, squaremesh panels in the extension.	LOA 25 323 kW	69-93	HKE MUT MNZ
2	OTB Tyrrhenian (GSA9-10)	Mario Sbrana	CIBM, CNR, SZN, CONISMA	Novel otterboards (semi-pelagic). Redesigned net features on upper netting panels, while maintaining the lower panels and commercial groundgear. Increasing mesh sizes in upper wings and square, modifying cutting angles, and hanging ratio between headline and top wings to enhance waterflow. Reducing width of bosoms.	LOA 19 441 kW	100-200	DPS HKE
3	OTB Central Mediterranean (GSA15-16)	Sergio Vitale	CNR, ABT	Alternative lighter otterboards made by steel frames and Plexiglas plates. Trawl's upper panels manufactured with high density polyethylene (PE) fibre and larger meshes in the wings. Replacement of the headline with 4 strands 28 mm polysteel, and the groundrope with a 38 mm PA to minimise seabed friction.	LOA 29.50 720 kW	400-800	ARA ARS
4	OTB Adriatic and Ionian (GSA17-19)	Pierluigi Carbonara	COISPA, CNR, CONISMA	Shifting from conventional demersal otterboards to semi-pelagic otterboards. New trawl design and use of high strength material, larger meshes a different groundrope.	LOA 20 447 kW	150-250	HKE DPS MUT SQM
5	OTB Adriatic and Ionian (GSA17-19)	Nedo Vrgoc	IOF, CNR	New hydrodynamic efficient trawl doors, designed to reduce hydrodynamic drag coefficient and increase spread. Optimization of trawl design including use of high strength material and larger meshes. Use of lighter drag components running over the seabed to reduce contact and therefore fuel consumption.	LOA 23 223 kW	80-120	HKE MUT NEP DPS MON EOI

Pilot studies defined by gear and area combinations

Pilot	Gear (Area)	Leader	Partners	Topic(s)	LOA[m] Power[kW]	Depth [m]	Target species
6	OTB Eastern Mediterranean (GSA22-23)	Alexis Conides	HCMR, FRI, CNR	New trawl net design manufactured with high strength and lighter (thinner twine) netting material (Dyneema). Novel semi-pelagic otterboard towed at 2-3 m above the seabed.	LOA 33.2 367 kW	25-120	HKE MUX DPS
7	OTB Black Sea (GSA29)	Violin Raykov	IO-BAS, NIMRD, CNR	Lighter otterboards contrasted with traditional flat wooden otterboards. Experimental trawl designed with the aim of obtaining lower towing resistance. Full scale experimental trawl manufactured based on the results from mathematical simulations.		20-80	TUR RJC
8	TBB Adriatic and Ionian (GSA17-19)	Alessandro Lucchetti	CNR	Change the orientation of the teeth in the Rapido trawl. Teeth are rotated 180°, positioning their convex side facing the codend. To ensure proper contact with the seabed, an additional metal bar was installed approximately 30 cm from the front of the sleds to support the repositioned teeth.	LOA 25.64	20-50	SOL BOY
9	TBB Black Sea (GSA29)	Violin Raykov	IO-BAS, NIMRD, CNR	Same beam width, ground plate chain measures 10x50 mm, the experimental TBB has high-strength lower plate chain of 6x30 mm, reducing overall weight and drag. Traditional TBB features a metal net of 42 mm steel with a 6 mm diameter in the bottom section (removed in the experimental TBB). Experimental TBB with 10 mm high-density polyethylene (HDPE) lower panel for protection, to reduce friction with the seabed.		20-40	RPW
10	OTM Black Sea (GSA29)	Cristian Danilov	IO-BAS, NIMRD, CNR	Shifting to lighter demersal otterboards. New net design developed to reduce unnecessary components and using lighter netting materials in the aft parts of the trawl net. Additionally, larger meshes in specific sections and lower-drag gear configurations will further strengthen fuel savings.	LOA 11.75	20-50	MUT HMM BLU

Bottom otter trawl (OTB) fisheries

Western Mediterranean (OTB, GSA1-7)

Shift to midwater doors, fuel-saving net design, including sweeps reduction, elimination of bridles, lower vertical opening, hydrodynamic floats, square-mesh panels in the extension.

Parameter / Gear	Q [l/h]	LPUE [kg/h]	DPUE [kg/h]	FUI [I/kg]	Income [Eur/h]
1st Traditional	89.4 (1.3)	36.1 (2.0)	6.6 (0.5)	2.564 (0.127)	223.9 (11.2)
Experimental	83.4 (1.5) (**)	33.0 (2.0)	8.3 (1.0)	2.653 (0.163)	213.0 (13.0)
2nd Traditional	104.6 (3.9)	36.3 (2.9)	6.1 (0.3)	2.927 (0.171)	258.7 (16/4)
Experimental	88.0 (1.4) (**)	38.9 (2.1)	10.2 (2.7)	2.292 (0.137)	241.9 (16(2)

Fuel consumption, Q[l/h]; landing and discards per unit effort, LPUE and DPUE [kg/h]; fuel use intensity, FUI[l/kg fish] for each gear configuration.

Tyrrhenian (OTB, GSA9-10)

Novel otterboards (semi-pelagic). Redesigned net features on upper netting panels, while maintaining the lower panels and commercial groundgear. Increasing mesh sizes in upper wings and square, modifying cutting angles, and hanging ratio top wings to enhance waterflow.

Parameter / Gear	Q [l/h]	LPUE [kg/h]	DPUE [kg/h]	FUI [I/kg]	
Traditional	46.4 (3.6)	31.2 (3.7)	11.0 (2.5)	1.510 (0.219)	
Experimental	39.0 (1.4)	26.9 (4.5)	11.1 (5.3)	1.491 (0.255)	

Fuel consumption, Q[l/h]; landing and discards per unit effort, LPUE and DPUE [kg/h]; fuel use intensity, FUI[l/kg fish] for each gear configuration.

Improvement of otterboard design

	Parameter		VEE	VF15	Diff.	Diff%
Towing speed	TS	[kn]	3.85	3.25	-0.60	-15.6%
Horizontal door spread	HDS	[m]	61.13	86.57	25.45	41.6%
Horizontal net opening	HNO	[m]	19.88	24.61	4.74	23.8%
Vertical net opening	VNO	[m]	1.67	1.70	0.03	1.6%
Fuel consumption rate	FCR	[kg/h]	58.74	48.16	-10.59	-18.0%
Area explored in 1-hour-haul	AEH	[1000m ²]	141.72	148.15	6.43	4.5%
Fuel consumption per area explored	FCH	[kg/1000m ²]	0.41	0.33	-0.09	-21.6%

Improvement of otterboard design

	OTB, TBB				
Hour/Day	Mon	Tue-Wed	Thu	Week	
Harbour (H)	2	1	15	19	
Sailing (S)	3	4	2	13	
Towing (T)	19	19	7	64	

Profile for a vessel of Ancona	a (Italy)
Trawling hours/week	64
Working weeks per year	47
Trawling hours/year	3,008
Fuel cost (EUR/I)	1.00
Consumption VEE (I/hr)	50.5
VF15 (I/hr)	41.4
D 1 1 1	EUD
Door investement	EUR
VEE	3,500
VF15	7,000
Monitoring acoustic system	30,000
Extra Investement	33,500
Fuel cost per year	
VEE	151,904
VF15	124,531
Comparison	27,373

Net design and high strength materials

<u>Traditional trawl</u>: Commonly used in the Italian commercial fishery (reference trawl)

<u>Experimental trawl</u>: Knotted *Rubitech* netting sections in the wings; new net design; reduction of the netting area

Charac	Characteristics			N Direction				
	Mesh bar		ng load	Tena	acity			
RTEX	length	Dry	Wet	Dry	Wet			
	[mm]	[kg]	[kg]	[g/RTEX]	[g/RTEX]			
Knotl	Knotless PA							
1200	22	43.5	39.1	18.1	16.3			
1200	24	43.4	38.7	18.1	16.1			
1200	30	35.3	30.8	14.7	12.8			
1500	55	41.0	39.0	13.7	13.0			
3600	22	95.7	88.1	13.3	12.2			
4500	22	127.9	121.0	14.2	13.4			
6000	24	144.9	136.1	12.1	11.3			
9000	30	256.8	-	14.3	-			
Knotted	Rubitech							
624	55	92.0	94.6	73.7	75.8			

Net design and high strength materials

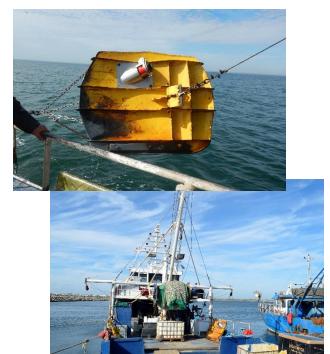
Traditional Trawl			Experim	Experimental Trawl			
Speed knots	Power	Fuel consumption	Power	Fuel consumption	Fuel saving		
	HP	[l/hour]	HP	[l/hour]	[l/hour]		
3.25	274	51.8	254	48.8	2.9		
3.50	308	56.6	283	53.1	3.5		
3.75	341	61.4	313	57.4	4.0		
4.00	375	66.2	343	61.6	4.6		
4.25	408	71.0	373	65.9	5.1		

Trawling hours/week		64
Working weeks per year		47
Trawling hours/year		3,008
Fuel cost (EUR/I)		1
Consumption	Traditional (I/hr)	66.2
·	Experimental (I/hr)	61.6
Gear Investments (Euro)	Traditional trawl	2,345
	Experimental trawl	3,815
	Extra investment	1,470

Fuel cost per year (Euro)

Traditional trawl	199,130
Experimental trawl	185,293
Comparison	13.837

Midwater otter trawl (OTM) fisheries



Black Sea (OTM, GSA29)

Shifting to lighter demersal otterboards. New net design developed to reduce unnecessary components and using lighter netting materials in the aft parts of the trawl net. Additionally, larger meshes in specific sections and lower-drag gear configurations will further strengthen fuel savings.

Gear setup / parameter	Traditional	Experimental
DBS [m]	22.6 (1.2)	22.7 (2.8)
VTG [kn]	3.2 (0.1)	3.2 (0.1)
HDS [m]	110.2 (0.3)	111.2 (0.6)
HNO [m]	46.9 (3.1)	45.3 (1.3)
VNO [m]	1.76 (0.13)	1.83 (0.07)
Q [l/h]	23.1 (1.2)	13.2 (0.8)
LPUE [kg/h]	220.0 (78.3)	153.9 (97.4)
FUI [I/kg]	0.146 (0.155)	0.126 (0.086)

Fishing depth, DBS[m]; towing speed, VTG[kn]; horizontal door spread, HDS[m]; horizontal net opening, HNO[m]; vertical net opening, VNO[m]; fuel consumption, Q[l/h]; landing per unit effort, LPUE [kg/h]; fuel use intensity, FUI[l/kg fish].

Beam trawl (TBB) fisheries

Adriatic and Ionian (TBB, GSA17)

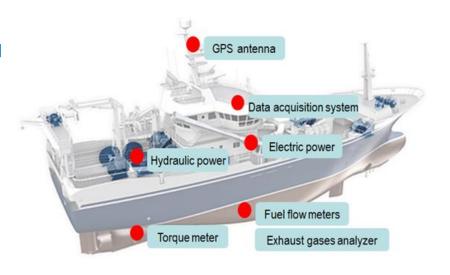
Change the orientation of the teeth in the Rapido trawl. Teeth are rotated 180°, positioning their convex side facing the codend. To ensure proper contact with the seabed, an additional metal bar was installed approximately 30 cm from the front of the sleds to support the repositioned teeth.

Gear type	Q [l/h]	Species		CPUE [kg/h]	FUI [l/kg]
Traditional	133.0 (3.1)	Bolinus brandaris	Purple dye murex	114.7 (9.9)	1.160 (0.211)
		Solea solea	Common sole	24.7 (0.7)	5.351 (0.203)
		Other species		6.1 (1.4)	35.174 (8.300)
		Total catch		140.0 (10.9)	0.950 (0.154)
Experimental	123.1 (1.6)	Bolinus brandaris	Purple dye murex	73.3 (9.1)	1.680 (0.178)
		Solea solea	Common sole	25.8 (3.6)	4.777 (0.550)
		Other species		9.9 (1.4)	14.457 (2.063)
		Total catch		108.9 (13.0)	1.130 (0.112)

DecarbonyT-Collaborative efforts towards a greener fishing industry in the Mediterranean and Black Sea

Presentation Overview

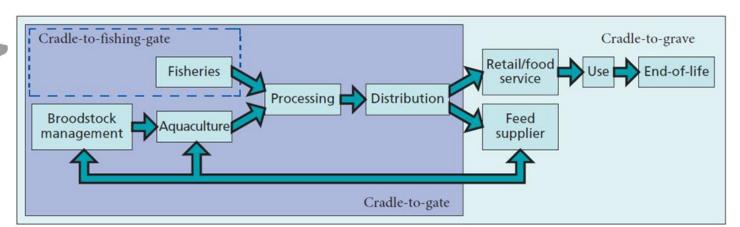
- 1) Pilot studies for fuel saving trawling gears
- 2) Energy audits
- 3) Development of low impact and fuel-efficient gears
- 4) Methodological framework and instrumentation


Where the energy is going? Energy audit in fisheries

www.nature.com/scientificdata

scientific data

OPEN Energy audit and carbon footprint in DATA DESCRIPTOR trawl fisheries


Antonello Sala no¹ Dimitrios Damalas², Lucio Labanchi³, Jann Martinsohn⁴, Fabrizio Moro¹, Rosaria Sabatella & Emilio Notti 101

SCIENTIFIC DATA

(2022) 9:428 | https://doi.org/10.1038/s41597-022-01478-0

Energy audit is a systematic approach to evaluate energy consumption in fisheries

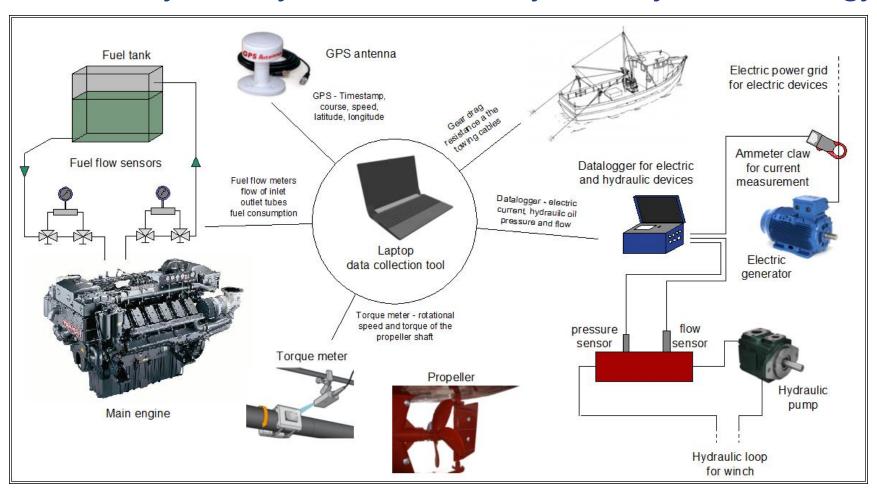
Energy audit is a systematic approach to evaluate energy consumption in fisheries

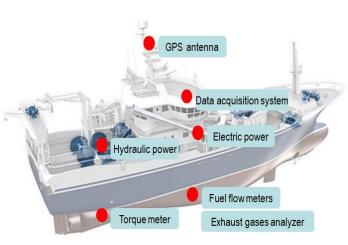
Objectives

- > to **define the energetic profile** of the fishing vessel through energy indicators
- > to identify technological improvements
- > to evaluate the **technical and economical benefits** of improvements

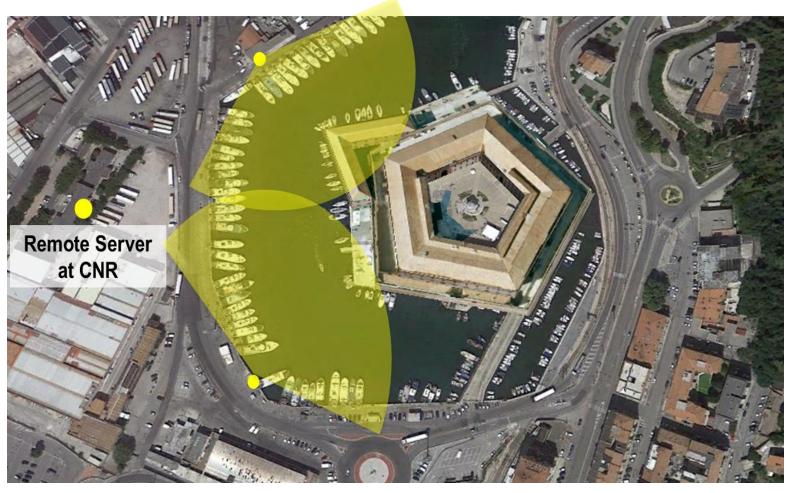
Case study: European Legislation

- ✓ Council Regulation (EC) Nr. <u>2371/2002</u> Art. 33: "Conservation and sustainable exploitation of fisheries"
- ✓ Council Regulation (EC) Nr. <u>744/2008</u> del 24/07/2008: "A Community contribution should also be provided for collective actions aimed at delivering expertise to vessel owners in relation to *energy audits* for vessels"


Energy audits

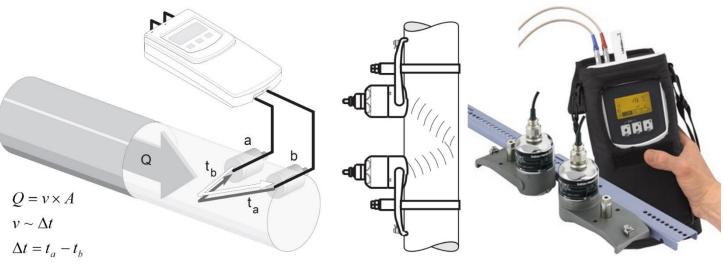


- ➤ <u>Updated Information</u>: the dataset has been revised and enriched with the latest available data, ensuring greater accuracy and relevance.
- Expansion to the Mediterranean and Black Sea: The data coverage has been extended to include the entire Mediterranean and Black Sea regions, providing a more comprehensive and representative foundation for assessments and comparisons.


Case study in Italy: measurement system layout for energy audit in fisheries

Free Wi-Fi area for fishers and data communication

Remote Server



Mass fuel flow sensor

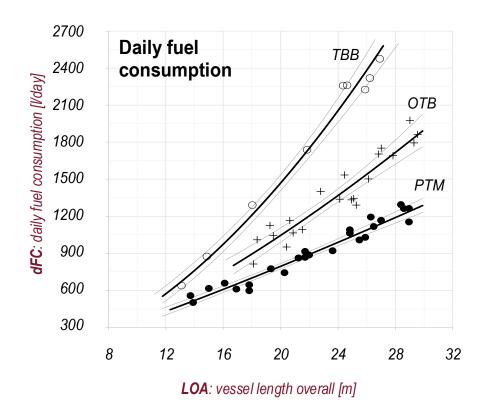
Portable ultrasonic flow meter

Torque meter measurement

AC electric and hydraulic data collection system

Load cell for gear drag measurement

Main characteristics of the monitored fishing vessels


Vessel	VL	LOA [m]	PB [kW]
OTB01	VL1824	21.5	478
OTB02	VL1824	22.8	574
TBB01	VL2440	25.9	884
PTM01	VL2440	28.6	940
PTM02	VL2440	29.0	940
PTM03	VL2440	26.5	870
PTM04	VL2440	25.5	772
PTM05	VL2440	25.9	884
PTM06	VL2440	29.0	940
PTM07	VL2440	27.0	809

OTB: bottom otter trawler PTM: midwater pair trawler TBB: Rapido beam trawler

Mean daily fuel consumption against vessel length overall (LOA)

OTB: bottom otter trawler PTM: midwater pair trawler

TBB: Rapido beam trawler

General linear model: $FC[l/day] = q \times LOA^m$

	Daily consumption (dFC)		
Parameters/vessel type	OTB	PTM	TBB
slope, m	1.470	1.196	1.838
intercept, q	12.811	22.104	5.973
F	158.1	475.7	666.6
d.o.f	19	23	7
R-square	0.893	0.954	0.990

Fuel use intensity (FUI) and carbon footprint in trawl fisheries

Gear Target species		FUI	Carbon footprint
Geal	Target species	[l fuel/t fish]	[kg CO2/t fish]
Single boat bottom otter trawl (OTB)	Mixed demersal species	4,085 (3,778-4,391)	10,784 (9,974-11,593)
Beam trawl (TBB)	Sole, murex	5,418 (3,967-6,869)	14,304 (10,472-18,135)
Midwater pair trawl (PTM)	Anchovy, sardine	349 (330-369)	922 (871-973)
Overall		2,895 (2,696-3,095)	7,643 (7,116-8,170)

	FUI [l/t]			
Target species/Gears	No.	Min	Max	Mean
Demersal species				
Bottom otter trawls	139	326	17,560	2,970
Beam trawls	2	980	2,610	1,795
Small pelagics				
Midwater otter trawls	26	81	1,097	360
Overall				2,832
All trawl gears				2,469

Source: modified and adapted from Sala et al. (2022)

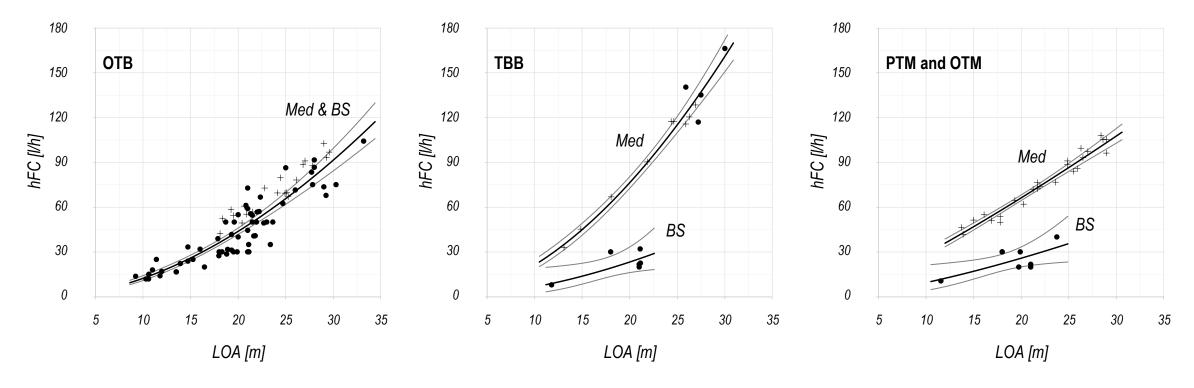
- > Trawl fisheries in Med use approximately 2.9 litres of fuel per kg of fish
- ➤ Fuel consumption rate varies according to gear type and vessel size: approximately 7.6 kg·CO2/kg fish

Fuel use intensity (FUI) and carbon footprint in trawl fisheries

Gear	Target species	FUI	Carbon footprint
Jean	i di get species	[l fuel/t fish]	[kg CO2/t fish]
Single boat bottom otter trawl (OTB)	Mixed demersal species	4,085 (3,778-4,391)	10,784 (9,974-11,593)
Beam trawl (TBB)	Sole, murex	5,418 (3,967-6,869)	14,304 (10,472-18,135)
Midwater pair trawl (PTM)	Anchovy, sardine	349 (330-369)	922 (871-973)
Overall		2,895 (2,696-3,095)	7,643 (7,116-8,170)

Source: modified and adapted from Sala et al. (2022)

Carbon footprint per kilogram of product from LCA studies (*cradle to retail*). An additional 500 kg CO2-eq/t of fish is added to account for processing, packaging and transportation emissions


Products	Carbon footprint [kg CO2/t]
Seafood from aquaculture	3,000-15,000
Poultry	2,000-6,000
Pork	4,000-11,000
Beef	9,000-42,000
Mutton and lamb	10,000-150,000

Source: modified and adapted from Nijdam, et al. (2012)

Energy Audit in Fisheries: Mediterranean and Black Sea (DecarbonyT outcomes)

Relationships length overall (LOA) vs. hourly fuel consumption (hFC)

Main conclusions. Gear innovations to enhance energy efficiency

- ➤ **Rewarding best practices** and redirecting fuel subsidies to encourage the development of energy-saving gear
- > Developing **acceptable technology** and creating incentives (*win-win situations*)
- ➤ Objectives being achievable and realistic
- ➤ Adequate training and technical assistance
- ➤ Making industries part of the solution (*proactive mode*)
- ➤ No realistic **alternatives available to trawling** for capturing certain species

Optimizing fuel efficiency in fisheries: balancing innovation and performance

- ➤ Significant fuel savings (10-20%) can be achieved quickly by improving net design and material or enhancing otterboard hydrodynamics.
- ➤ Replicating the catching performance of a fishing gear that has been refined over years by experts and fishers is particularly challenging within a short 10-day timeframe (5 standard, 5 experimental).
- ➤ Effective gear modifications require iterative testing, adaptation, and feedback to align efficiency gains with catch consistency.
- ➤ This process necessitates industry involvement from the proposal phase to ensure practical adoption and refinement.
- ➤ With *DecarbonyT*, we have sent a clear message to the industry: current fishing gears can be improved, and the payback time for fuel-saving modifications is relatively short.

Thank you for your attention

Antonello Sala (antonello.sala@cnr.it)
National Research Council (CNR)

Sala, A., Accadia P., Adamidou, A., Barbetti, L., Besbes, M.K., Bitetto I., Buzzi, A., Carbonara, P., Casini, M., Ceballos, V., Coll, M., Conides, A., Costantini, M., Damalas, D., De Carlo, F., Dimitrov, D., Ferrà, C., Galea, J., Geraci, M.L., Guijarro, B., Koutrakis, E., Isajlović, I., Liontakis, A., Li Veli, D., Lucchetti, A., Mangano, M.C., Mantas, G.D., Maravelias, C., Medvesek D., Mytilineou, C., Neglia, C., Notti, E., Ordinas, F., Ortega, Cerdà, M., Petetta, A., Raykov, V., Rinalduzzi, S., Rosini, A., Russo, T., Sbrana, M., Scarcella, G., Danilov, C.S., Stagioni, M., Tassetti, A.N., Tiganov, G., Touloumis, K., Vianson, G., Vitale, S., Vrgoc, N., Zlateva, I.

