
Anthropic impact on the Mediterranean Sea, other than climate change Presentation for MEDAC WG1, online meeting of 16 February 2021

Dr. George Triantaphyllidis, Greece

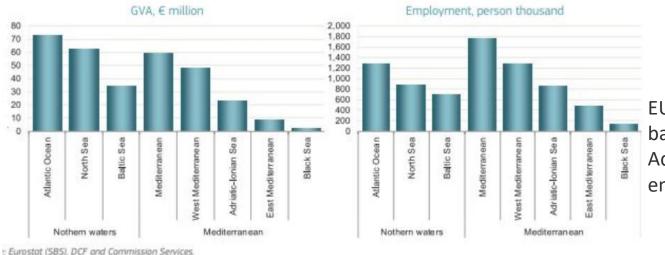
GeorgeTrianta@hotmail.com

Mediterranean Sea: main economic activities and trends

MEDAC MEDAC MEDITERRANEAN A D V I S O R Y C O U N C I L

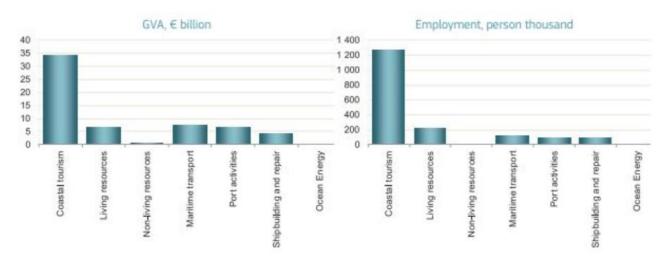
- 1. Coastal development
- 2. Marine-based pollution sources
- 3. Maritime transport and ports
- 4. Offshore oil and gas exploration and extraction
- 5. Marine renewable energy
- 6. Marine mining
- 7. Marine aquaculture
- 8. Professional fisheries
- 9. Recreational fisheries
- 10. Tourism
- 11. Biotechnology

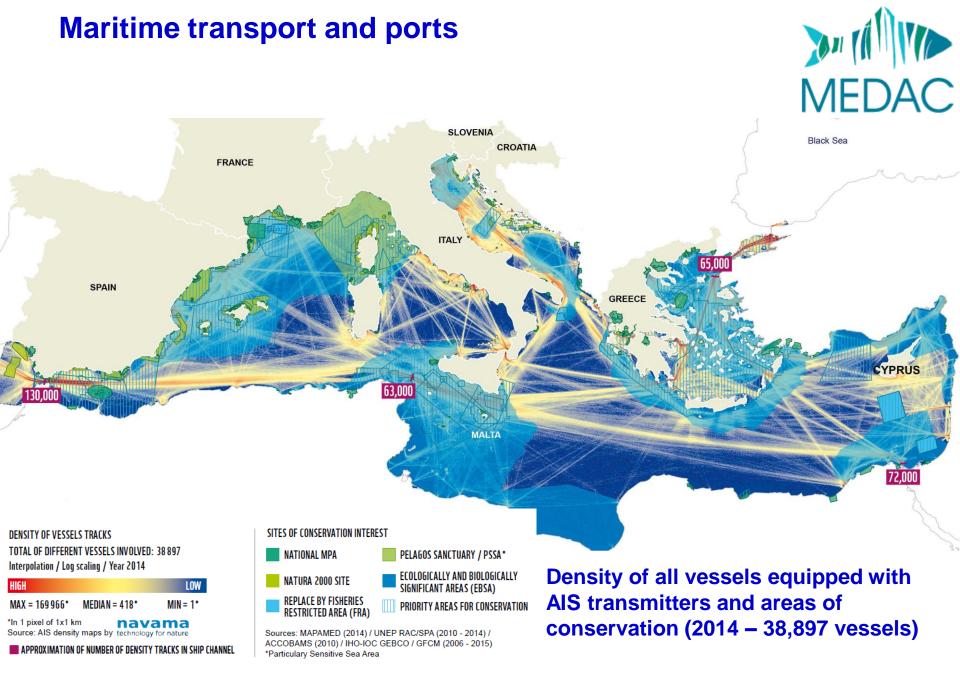
Slide 2/29


Source: Randone et al., 2017. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. WWF Mediterranean Marine Initiative.

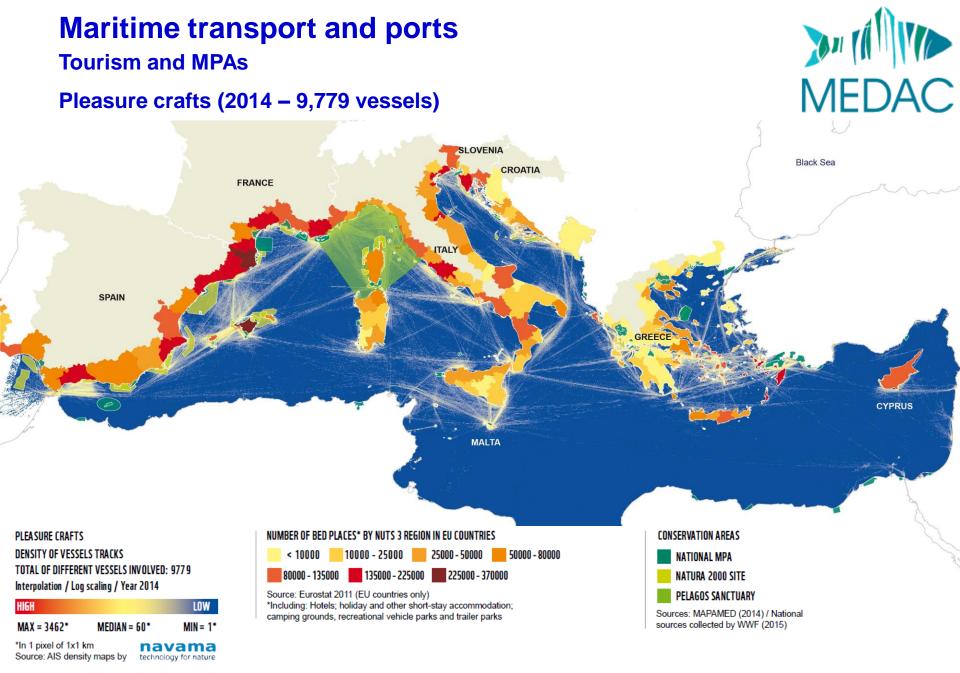
Slide 3/29

Source: Randone et al., 2017. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. WWF Mediterranean Marine Initiative.


EU Blue Economy by sea basin, 2017: Gross Value Added (GVA) and employment

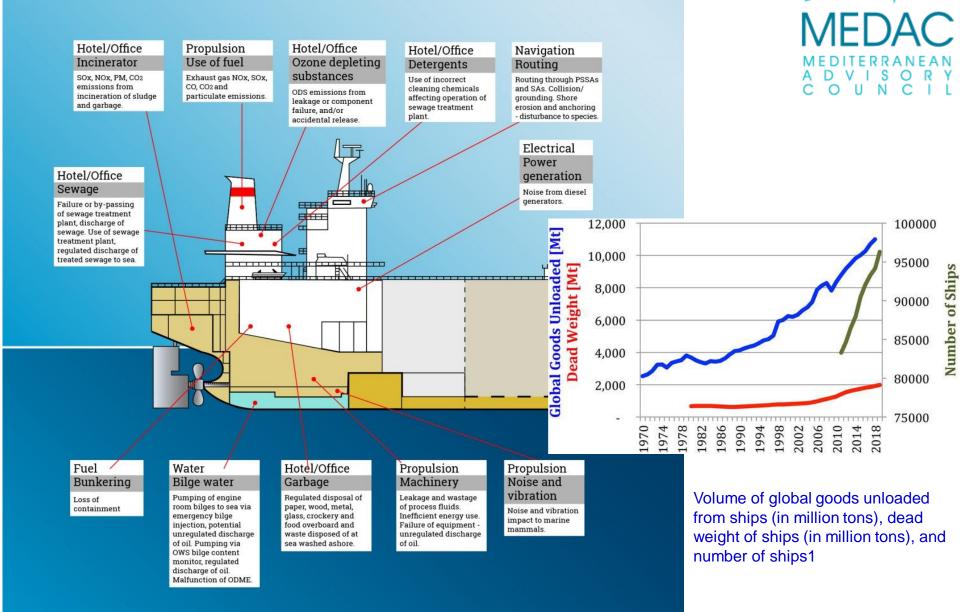

EU Blue Economy by sea basin, 2017: Gross Value Added (GVA) and employment

The Mediterranean Sea basin Blue Economy by sector, 2017: Gross Value Added (GVA) and employment



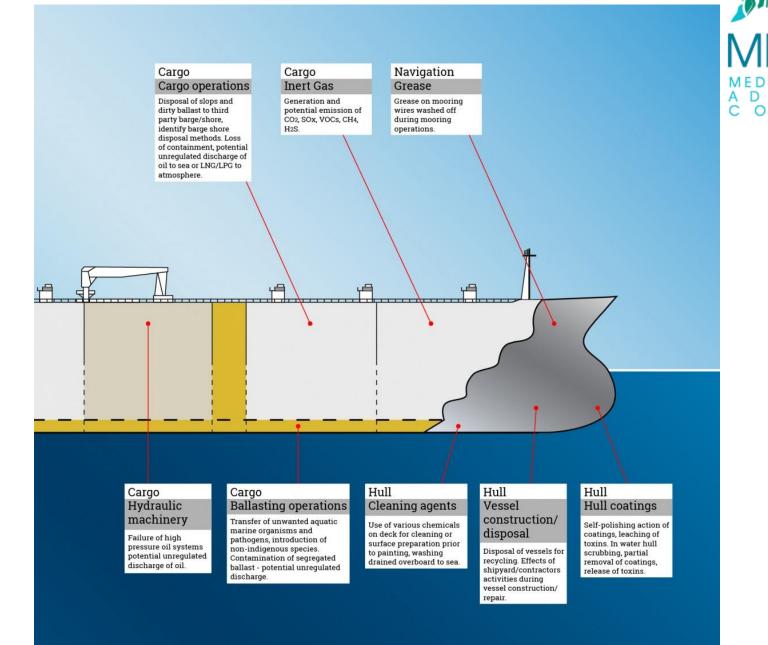
Source: Eurostat (SBS), DCF and Commission Services.

Slide 4 / 29



Slide 5/29

Slide 6/29


Potential environmental effects from ships

Slide 7 / 29

Source: https://www.capitalship.gr/environmental-impact

Potential environmental effects from ships

S O

N

U

Slide 8 / 29

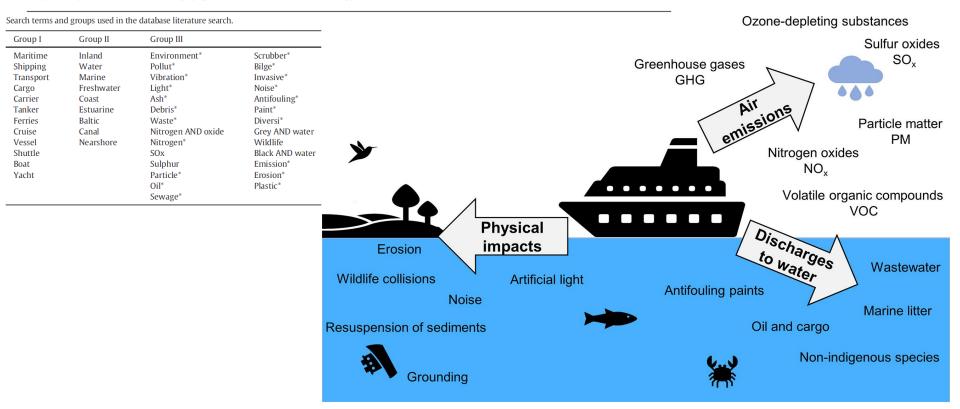
Source: https://www.capitalship.gr/environmental-impact

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review


A review on the environmental impacts of shipping on aquatic and nearshore ecosystems

Annika K. Jägerbrand ^{a,b,*}, Andreas Brutemark ^a, Jennie Barthel Svedén ^a, Ing-Marie Gren ^c

^a Calluna AB, Hästholmsvägen 28, SE-131 30 Nacka, Sweden

^b Department of Construction Engineering and Lighting Science, School of Engineering, Jönköping University, P.O. Bax 1026, SE-551 11 Jönköping. Sweden

^c Department of Economics, Swedish University of Agricultural Sciences, Bax 7013, SE-750 07 Uppsala, Sweden

Slide 9/29

Science of the Total Environment 695 (2019) 133637

Contents lists available at ScienceDirect

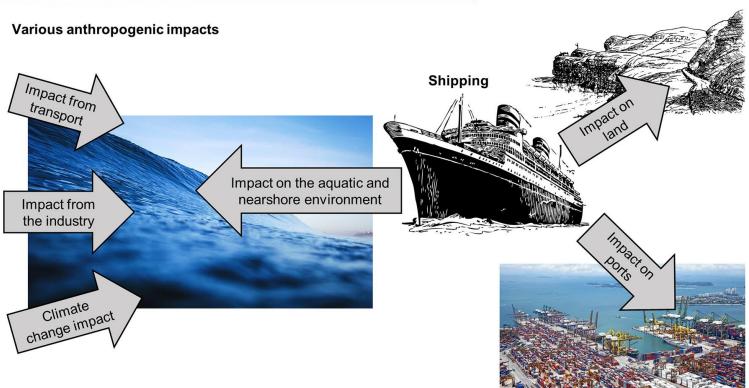
Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

A review on the environmental impacts of shipping on aquatic and nearshore ecosystems

Annika K. Jägerbrand ^{a,b,*}, Andreas Brutemark ^a, Jennie Barthel Svedén ^a, Ing-Marie Gren ^c


* Calluna AB, Hästholmsvägen 28, SE-131 30 Nacka, Sweden

^b Department of Construction Engineering and Lighting Science, School of Engineering, Jönköping University, P.O. Bax 1026, SE-551 11 Jönköping. Sweden

^e Department of Economics, Swedish University of Agricultural Sciences, Bax 7013, SE-750 07 Uppsala, Sweden

HIGHLIGHTS

- There is a plethora of environmental and ecological effects of shipping.
- Main impact categories are water discharges, physical impacts and air emissions.
- A general lack of quantitative data on shipping derived environmental effects.
- The shipping contribution to acidification has been quantified.
- A holistic approach and synergistic effects of parameters are missing.

Slide 10 / 29

Science of the Total Environment 695 (2019) 133637

Contents lists available at ScienceDirect

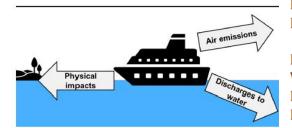
Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

A review on the environmental impacts of shipping on aquatic and nearshore ecosystems

Annika K. Jägerbrand ^{a,b,*}, Andreas Brutemark ^a, Jennie Barthel Svedén ^a, Ing-Marie Gren ^c


* Calluna AB, Hästholmsvägen 28, SE-131 30 Nacka, Sweden

^b Department of Construction Engineering and Lighting Science, School of Engineering, Jönköping University, P.O. Bax 1026, SE-551 11 Jönköping, Sweden ^c Department of Economics, Swedish University of Agricultural Sciences, Bax 7013, SE-750 07 Uppsala, Sweden

HIGHLIGHTS

GRAPHICAL ABSTRACT

- There is a plethora of environmental and ecological effects of shipping.
 Main impact categories are water dis-
- charges, physical impacts and air emissions.
- A general lack of quantitative data on shipping derived environmental effects.
- The shipping contribution to acidifica-
- tion has been quantified.
 A holistic approach and synergistic effects of parameters are missing.

NO_x

PM VOC

ODS

	rá II	YD	
M	ED	AC	

Environmental and ecological consequences

Acidification, eutrophication, climate change (net cooling)

Changes in community structure (through increased UVB)

Air pollution, climate change (cooling)

Air pollution, climate change (warming)

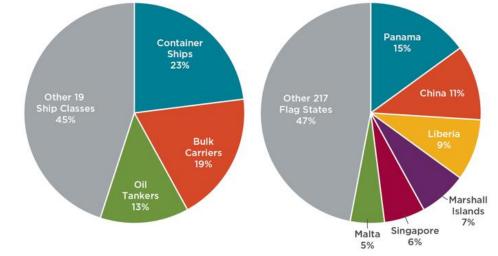
	Water discharges	
	Oil	Broad, from DNA-damage to changes in community
		structure
	Bilge water	Reproduction failure, changes in community structure
>	HNS	Toxicity, indirect ecological effects (e.g., changes in
/		behavior)
	Dry bulk	Habitat destruction, eutrophication
	Wastewater	Pollution, eutrophication, anoxia
\mathbb{Z}	Marine litter (plastic)	Population decline, pollution
1	NIS	Loss of biodiversity, changes in community structure
	Antifouling paints	Reproduction failure, reduced growth
	Physical impacts	
	Noise	Affected navigation, communication, prey detection, etc.
	Artificial light	Affected migration patterns, disorientation
	Wildlife collisions	Loss of biodiversity, threat to endangered species
	Erosion &	Habitat loss, eutrophication
	resuspension	habitat 1000, eutrophication
	Grounding	Loss (or gain) of habitat, pollution
	o. o unung	2000 (or gain) or nabrad, ponation
	Air emissions	
	GHG (mainly CO ₂)	Climate change (warming), acidification
	SO _x	Acidification, pollution, climate change (cooling)

IMPACTS OF SHIPPING ON MARINE FAUNA

EDITED BY: Christine Erbe, David Peel, Jessica Redfern and Joshua Nathan Smith PUBLISHED IN: Frontiers in Marine Science

DOI: 10.3389/978-2-88966-085-8

A dead whale estimated to be 46 feet (14 meters) long was carried into New Zealand's Port of Tauranga on the bow of a Maersk container ship (Oct 2017)



Health risks of air pollution in Europe – HRAPIE project

New emerging risks to health from air pollution – results from the survey of experts

Main findings

Share of CO₂ emissions by ship class (left) and flag state (right), 2013–2015 (source: https://theicct.org/)

A total of 100 respondents completed the survey, completing 113 sets of questions.

The top six emission source categories (of a total of 16) posing an emerging health risk identified by respondents were:

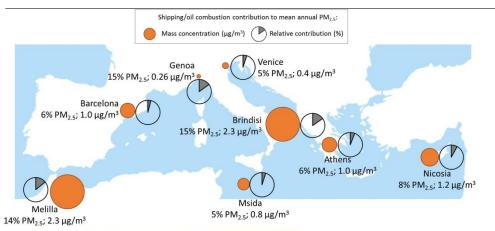
- 1. road transport (40.7%)
- 2. space heating and air conditioning (15.0%)
- 3. shipping (8.8%)
- 4. energy production and distribution (6.2%)
- 5. industrial processes (metal industries) (6.2%)
- 6. agriculture (5.3%).

Slide 13 / 29 Source: https://www.euro.who.int/__data/assets/pdf_file/0017/234026/e96933.pdf

Environment International 138 (2020) 105670 Contents lists available at ScienceDirect

Environment International

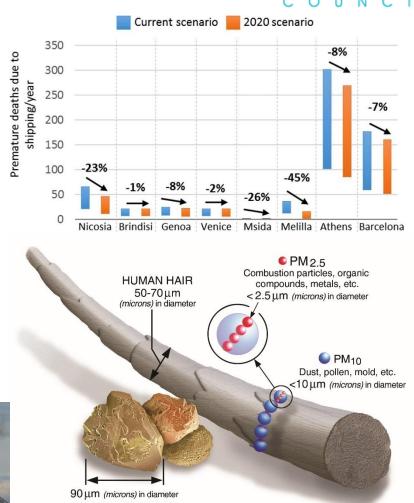
journal homepage: www.elsevier.com/locate/envint

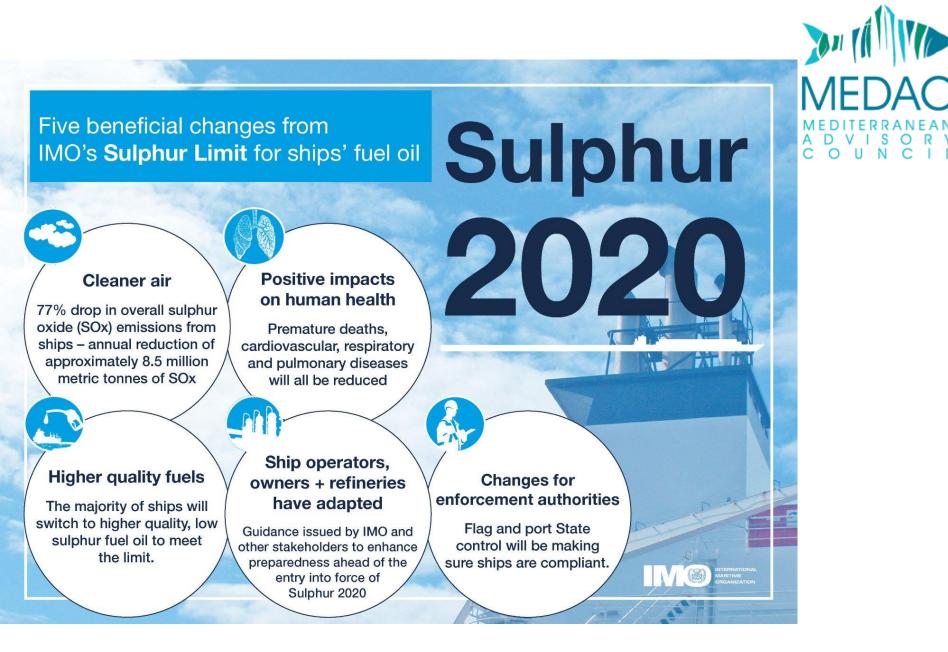


Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels

M. Viana^{a,*}, V. Rizza^b, A. Tobías^a, E. Carr^c, J. Corbett^d, M. Sofiev^e, A. Karanasiou^a, G. Buonanno^{b,f}, N. Fann^g

⁵ Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain ⁵ Deparment of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (FR), Italy ⁶ Energy and Environmental Research Associates, LLC, Pittsford, NY, United States ⁶ College of Earth, Ocean, and Environment, University of Delaware, Newark, DE, United States ⁷ Finnish Meteorological Institute (FMU), Helsinki, Finland ⁷ Queensiand University of Technology, Brisbane, Australia


⁸ Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Washington, DC, United States


Slide 14/29

FINE BEACH SAND

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

Source: IMO

Slide 15/29

https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx

In total, of the **95,402** ships in the UNCTAD maritime database, 7.66 % have installed or ordered a ballast water treatment system, 1.58 % have installed or ordered a system to reduce sulphur-oxide emissions, and 0.53 % have installed or ordered a system to reduce nitrogenoxide emissions as of 1 January 2019.

	Selected environmental indicators by vessel type, 2019				
	essel type	Percentage of vessels fitted with ballast water treatment systems	Percentage of vessels fitted with scrubbers	Percentage of vessels compliant with tier III regulations to reduce nitrogen-oxide emissions	
Bu	lk carriers	23.32	4.03	0.05	
Chemic	al tankers	10.72	1.15	0.86	
Conta	iner ships	18.88	5.05	0.19	
Ferries and passer	nger ships	1.36	2.13	0.57	
General ca	argo ships	2.16	0.65	0.21	
Liquefied natural ga	as carriers	28.76	1.45	1.45	
Offshore supp	ly vessels	2.37	0.03	0.96	
()il tankers	11.99	3.71	0.46	
Other/not	t available	2.82	0.30	0.19	
	Total	7.66	1.58	0.53	

Source: Review of Maritime Transport 2019

Slide 16 / 29

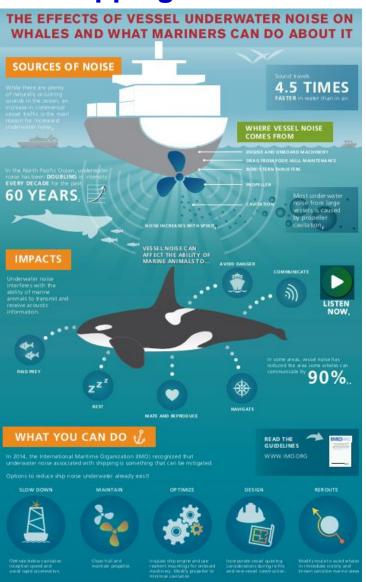
https://unctad.org/system/files/official-document/rmt2019_en.pdf

Ports impacts - Biofouling

Slide 17 / 29

Ports impacts - Biofouling

Toxicity


- Effects of TBT products on humans: irritated skin, headaches, colds, flu, fatigue dizziness, stomach ache, irritation of the eye and mucous membranes and prolonged exposure may cause liver and kidney damage.
- High levels of TBTO can affect the endocrine glands, upsetting the hormone levels in the pituitary, gonad and thyroid glands.
- Large doses of TBT have been shown to damage the reproductive and central nervous systems, bone structure and the gastrointestinal track of mammals.
- Studies have been conducted showing that TBTO causes depression of immune functions

Shipping noise

CARGO & CONTAINERS Third-octave SL (dB re 1µPa @ 1 m) TANKERS N=66 d), N=177 200 160 140mi 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz)

al. 2016 recordings ling vessels ation with \$12.64-

s

St. Lawrence Seaway, 255 ships

An indication of the relative merits of the different management and mitigation options

Source Type	Metric	Demand reduction	Alternative technology	Modify existing gear	MPAs and similar	Early planning options	Safety zones & shut-downs	Ramp-up	Mitigation sources	Isolation techniques	Operational measures
Seismic survey	Viability	н	н	н	M-H	M-H	M-H	Н	н	L	Н
airguns	Effectiveness	VH	M-H	L-M	М	М	(L-M)?		L?	L	L-M
anguno	Availability	S-F	I-S	1.0	1 - E	1	1	1.0	1.0	S	l I i i
	Viability	L-M	?	M-H	М	M-H	M-H	Н	M-H*	N	М
Navy sonar	Effectiveness	VH	?	H?	H?	H?	(L-M)?			N/A	м
	Availability	S?	F?	S?	1.00	1.1	1 - E			N/A	1.00
	Viability	?	М	Н	M-H	M-H	M-H	Н	L	н	N
Piledriving	Effectiveness	VH	н	M-H	М	м	(L-M)?	M?		н	N/A
	Availability	?	I-S	1.0	1.00	1	1.00	1.00		- 1	N/A
	Viability	М	N	M-H	М	М	Ν	N	N	Н	Н
Shipping	Effectiveness	M-H	N/A	н	М	М	N/A	N/A	N/A	?	L-M
	Availability	I-S	N/A	I-S	1.1	1.1	N/A	N/A	N/A	S	1.00
	Viability	L?	?	Ν	Н	н	Н	H*	H*	V	N
Explosions	Effectiveness	VH	?	N/A	н	н	M-H	M?	M?	?	N/A
	Availability	1.00	?	N/A	1.00	1.1	1.00	1.00	1	I-S	N/A
Pleasure craft	Viability	H?	M-H	N	Н	N	N	N	N	N	М
propellers	Effectiveness	L	н	N/A	н	N/A	N/A	N/A	N/A	N/A	(L-M)?
propeners	Availability	1.1	S	N/A	1.00	N/A	N/A	N/A	N/A	N/A	1.00
	Viability	Н	N	N	Н	N	N	N	N	N	L
Echo-sounders	Effectiveness	VH	N/A	N/A	н	N/A	N/A	N/A	N/A	N/A	L
	Availability	1	N/A	N/A	1.00	N/A	N/A	N/A	N/A	N/A	1
Marki haran	Viability	?	?	?	Н	н	M-H	Н	Н	N	L
Multi-beam sonar	Effectiveness	VH	?	?	н	н	(L-M)?	?	L?	N/A	L
Solial	Availability	?	?	?	1.1	1	L.	1	1.1	N/A	1.1

Source: WWF 2014.

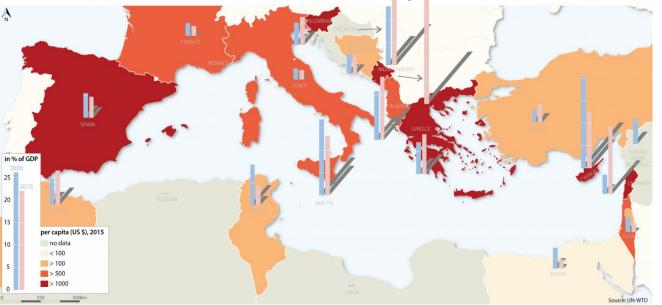
Reducing Impacts of Noise from Human Activities on Cetaceans

29 Source: https://www.portvancouver.com/wpcontent/uploads/2016/04/ECHO-Program-Underwater-Noise-Infographic-April-2016.pdf.

PORT of vancouver

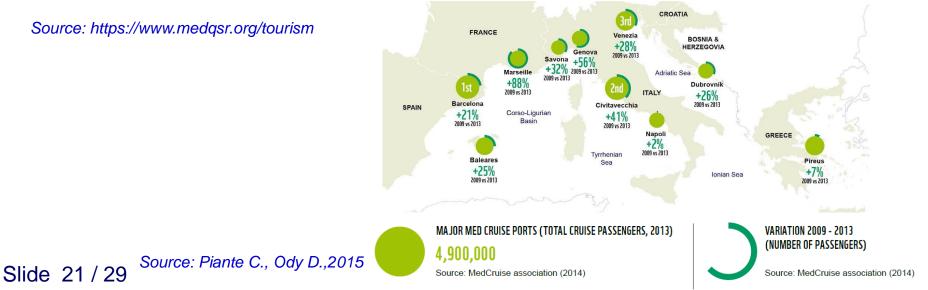
Slide 19/29

Impacts of maritime transport on GES

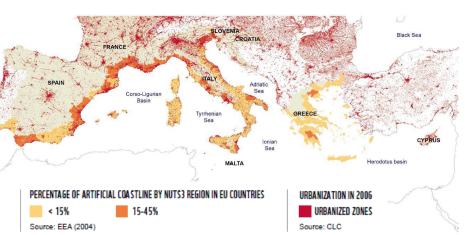

MSFD Descriptor	Impacts on GES	Future trends
D1 Biodiversity	Collisions with marine mammals and turtles, antifouling biocide effects on marin fauna, oil/pollutant toxic effects on marine organisms/top predators, effects of litter in marine organisms	
D2 Non-indigenous species	Ballast waters, fouling	7
D ₃ Commercial species		
D4 Foodwebs		
D5 Eutrophication	Sewage discharge (non-treated used water)	7
D6 Sea-floor integrity	Direct physical effects of vessels on benthic habitats and species, abrasion	
D7 Hydrographical conditions		
D8 Contaminants	Oil pollution (releases/discharges), eventua or chronic, shipping-derived antifouling biocides	al 🗾
D9 Contaminants in seafood		
D10 Marine litter	Littering, waste discharge	7
D11 Energy	Shipping noise (damage, disturbance to/of marine mammals and fish	7

Source: Piante C., Ody D.,2015. Blue Growth in the Mediterranean Sea: the Challenge of Good Environmental Status. MedTrends Project. WWF-France. 192 pages

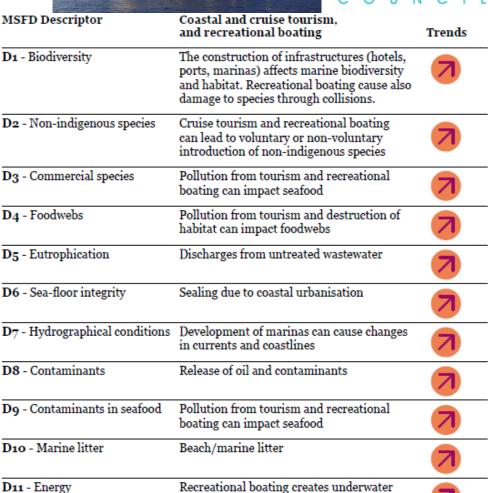
Slide 20 / 29

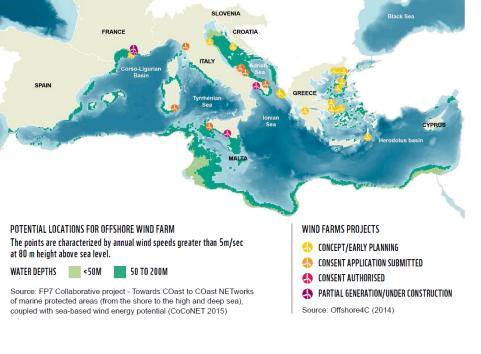

Impacts of coastal tourism, cruise tourism and recreational boating on GES

International tourism receipts



Growth of Med Cruise ports in number of passengers between 2009 and 2013

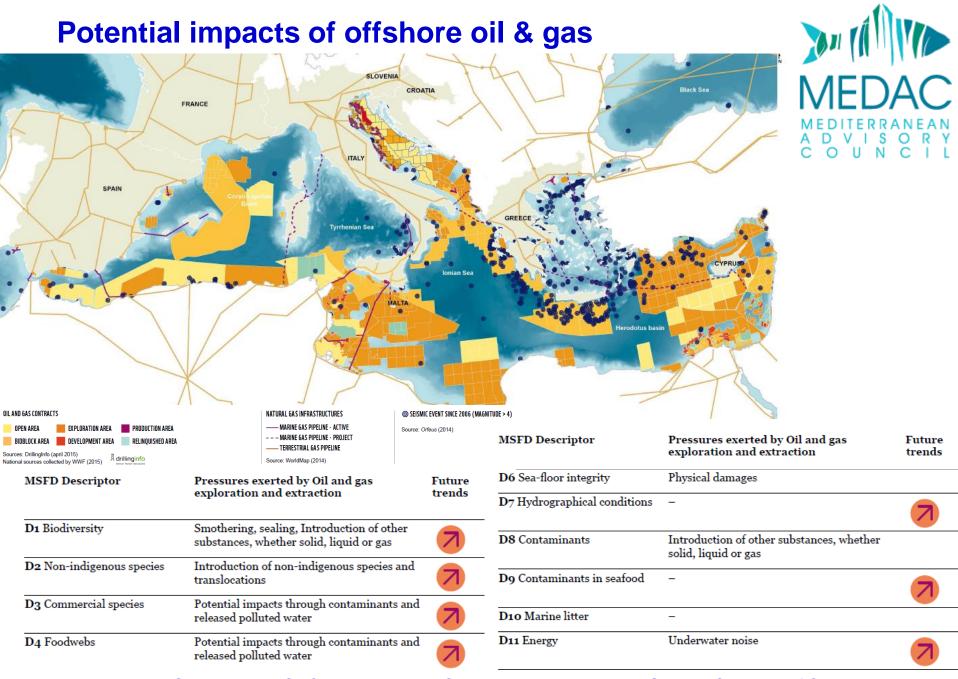




noise affecting marine species

MEDA

Slide 22 / 29


Impacts of the development of marine wind farms on GES

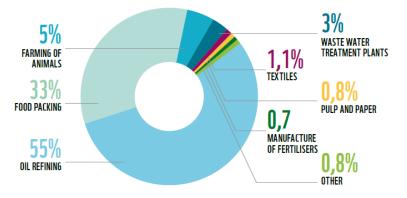
	A D V I C O U	S O R Y N C I L
MSFD Descriptor	Impacts on GES	Future trends
D1 Biodiversity	The construction stage leads to negative impa on marine biodiversity (abrasion, substrate lo smothering, death or injury by collision, etc.). the operational stage, possible environmental benefits (artificial reef role, exclusion of some all types of fishing) might increase biodiversity around wind turbines.	ss, 🖊 At or
D2 Non-indigenous species		
D3 Commercial species	At the operational stage, wind farms might act as an artificial reef that could benefit commercial species.	7
D4 Foodwebs		
D5 Eutrophication		
D6 Sea-floor integrity	The construction stage affects seafloor integrity and habitats (sealing, laying cables smothering, substrate loss, changes in siltati abrasion)	
D7 Hydrographical conditions	Sediment resuspension, change of water flow rate	× 7
D8 Contaminants	The construction of wind farms may lead to introduction of synthetic and non-synthetic compounds in the sea.	the 🗾
D9 Contaminants in seafood		
D10 Marine litter		
D11 Energy	Underwater noise mainly at the construction stage.	

Source: Piante C., Ody D.,2015. Blue Growth in the Mediterranean Sea: the Challenge of Good Environmental Status. MedTrends Project. WWF-France. 192 pages

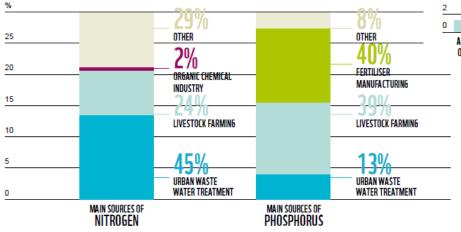
Slide 23 / 29

Slide 24 / 29

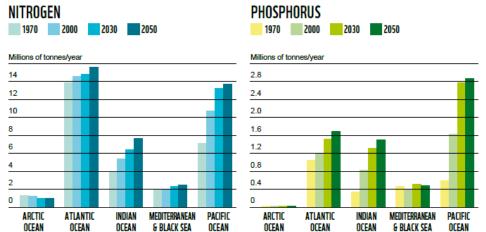
Potential impacts of marine mining on GES


SLOVENIA

Slide 25 / 29

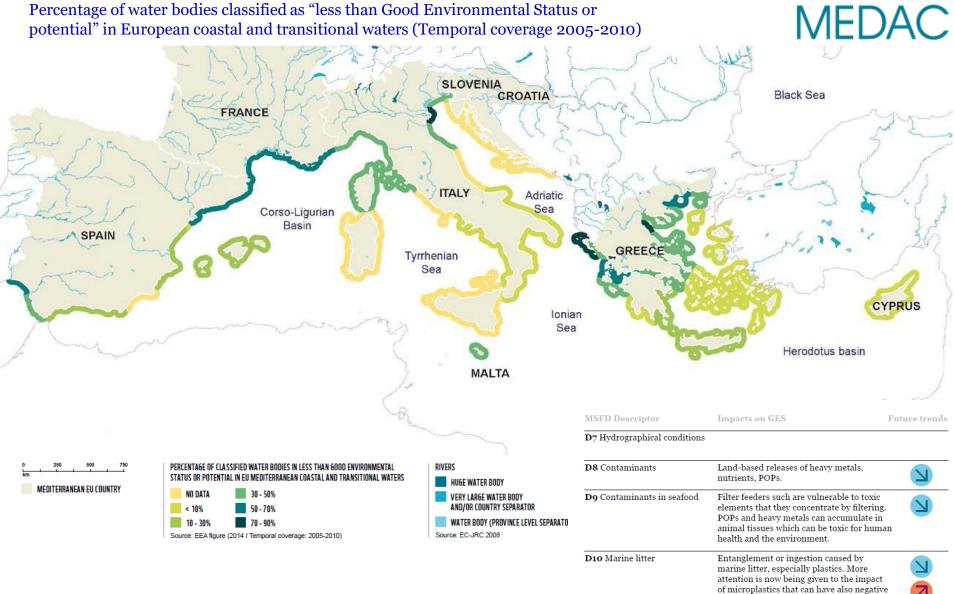


11	FRANCE			- II N	CII
SPAIN	Corso-Liguitan Basin	a second		Deep-sea mineral resources pressures in the Med	Future trends
	Tyrthetan Sea	Ionian Sea	D1 Biodiversity	Large-scale loss of habitat due to the extraction techniques, disrupted life habits of some organisms, impacts on pelagic organisms	7
	MALTA	Herodotus basin	D2 Non-indigenous spec	cies	
	A COMPANY		D3 commercial species		
			D4 Foodwebs	Chemical toxicity affecting foodwebs	7
	MEDITERRANEAN EU COUNTRY	SULPHIDE DEPOSITS Source: International Seabed Authority (2015)	D5 Eutrophication		
			D6 Sea-floor integrity	Disturbance of the largely unknown benthic layer	
			D 7 Hydrographical cond	litions	
			D8 Contaminants	Increasingly toxic water column	7
			D9 Contaminants in sea	food	
			D10 Marine litter		
			D11 Energy	Marine noise caused by extraction activities	7


Land-based pollution sources

Major point sources of organic water pollutants in the Mediterranean

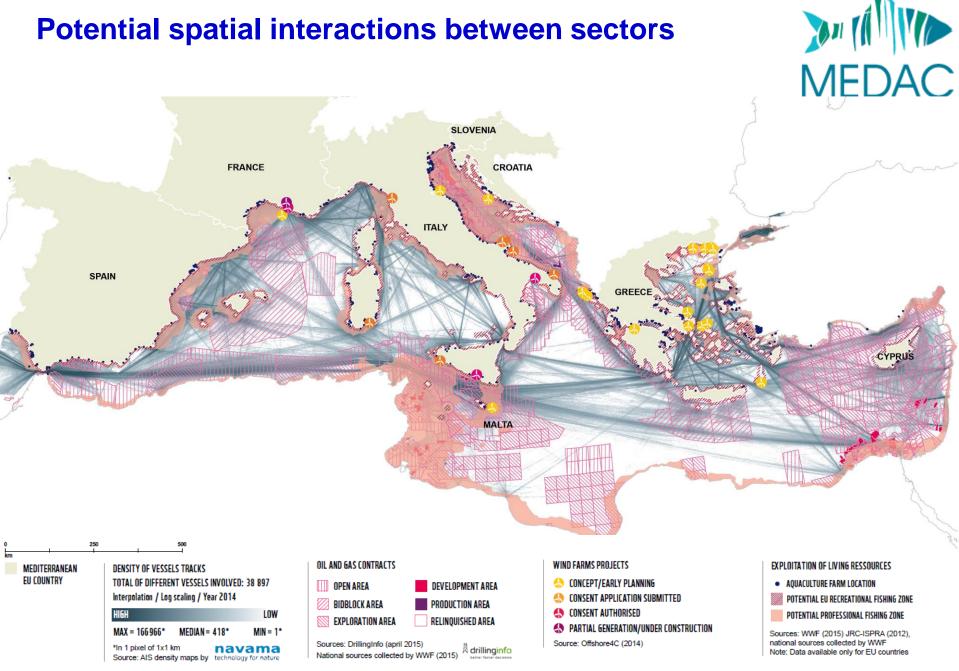
MEDAC MEDAC MEDITERRANEAN A D V I S O R Y C O U N C I L


River discharges of nitrogen and phosphorus into the sea, 1970-2050

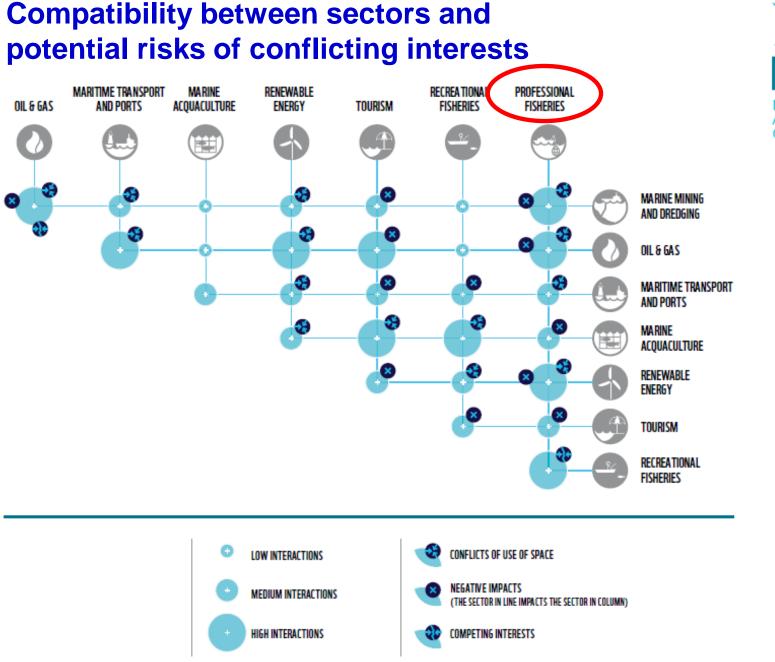
Main sources of nitrogen and phosphorous in the Mediterranean Sea

Slide 26 / 29

Land-based pollution sources


Percentage of water bodies classified as "less than Good Environmental Status or potential" in European coastal and transitional waters (Temporal coverage 2005-2010)

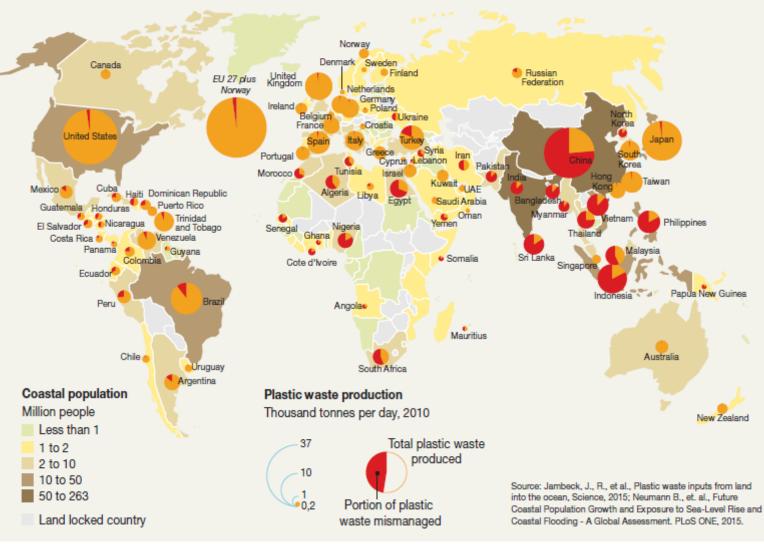
Slide 27 / 29


Source: Randone et al., 2017. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. WWF Mediterranean Marine Initiative.

effects on organisms.

Slide 28 / 29

Source: Randone et al., 2017. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. WWF Mediterranean Marine Initiative.

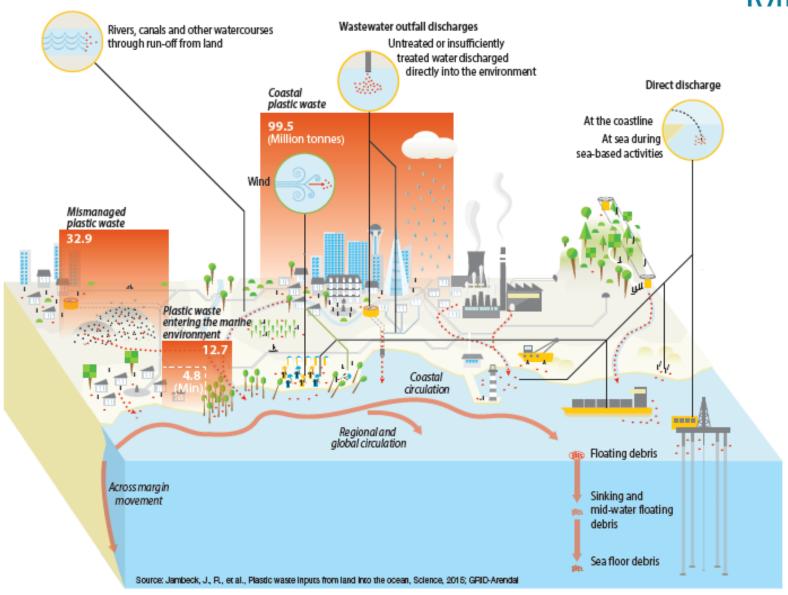

Slide 29 / 29

Source: Randone et al., 2017. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. WWF Mediterranean Marine Initiative.

S N

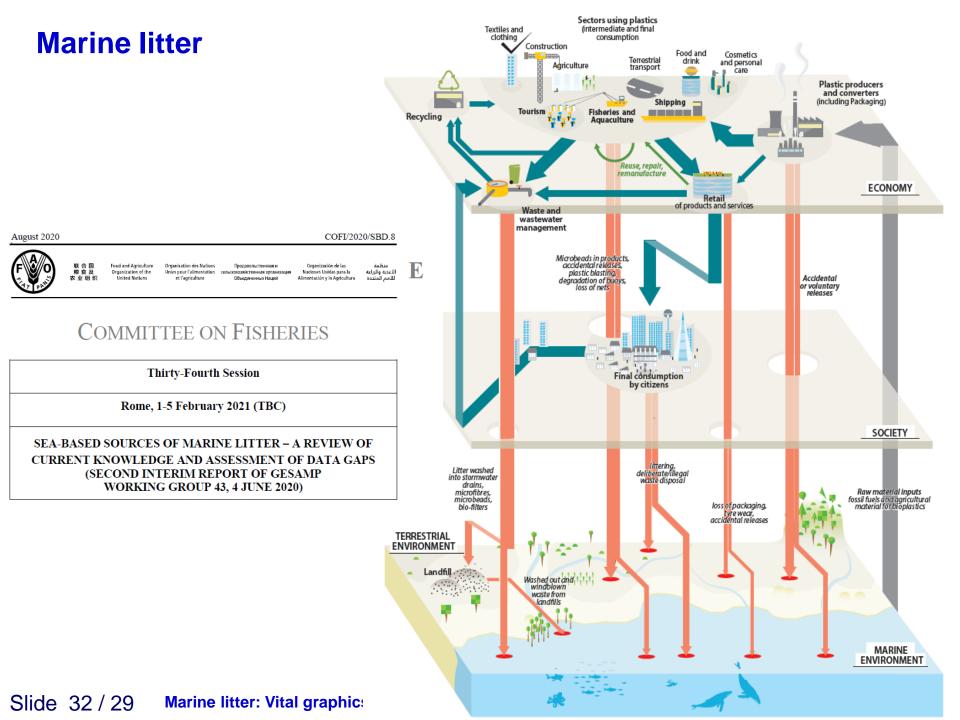
Marine litter

Plastic waste produced and mismanaged



Marine litter has been defined by UNEP as "any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Marine litter consists of items that have been made or used by people and deliberately discarded into the sea or rivers or on beaches; brought indirectly to the sea with rivers. sewage, storm water or winds; accidentally lost, including material lost at sea in bad weather (fishing gear, cargo); or deliberately left by people on beaches and shores".

Slide 30 / 29


Marine litter: Vital graphics

Marine litter: Pathways and fluxes of plastics into the oceans

S O

Slide 31 / 29 Marine litter: Vital graphics

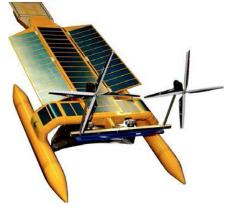
Marine litter - Solutions

Main characteristics of marine litter monitoring devices

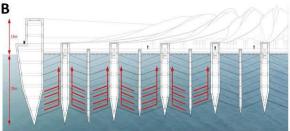
Litter monitoring device	Technology	Target	TRL
Litter Drone	Aerial drone	Beach	7 - System prototype demonstration in operational environment
Marine Litter Dronet	Aerial drone	Sea surface, water column, sea floor	8 - Technology demonstrated in relevant environment
Phantom 4 Pro and Sensefly eBee	Aerial drone	Beach	6 - Technology demonstrated in relevant environment
3DR Solo	Aerial drone	Riverine environment	6 - Technology demonstrated in relevant environment
DJI Phantom 3 Advanced (Adv)	AUV	Beach	7 - System prototype demonstration in operational environment
LIDAR	Litter detection and ranging device	Beach	6 - Technology demonstrated in relevant environment
Sealittercam	Visual Technology	Sea surface	6 - Technology demonstrated in relevant environment
Vessel-based photography survey	Vessel device with visual technology	Beach, water surface	7 - System prototype demonstration in operational environment
DJI Mavic Pro	Aerial Drone	Beach	7 - System prototype demonstration in operational environment


Slide 33 / 29 Source: CLAIM Project https://www.claim-h2020project.eu/

Marine litter - Solutions


Marine litter collection devices

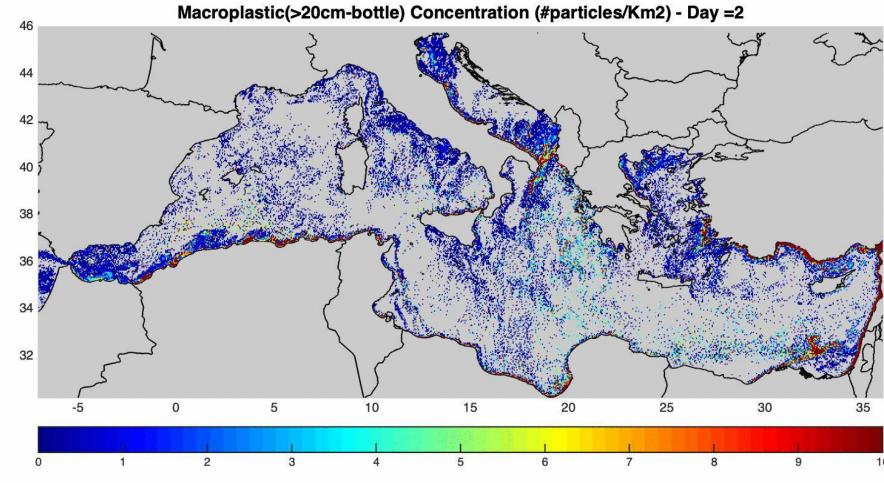
Sargaboat[®] Sargatrailer[®] The Ocean Cleaner



Slide 34 / 29 Source: CLAIM Project <u>https://www.claim-h2020project.eu/</u>

Marine litter - Solutions

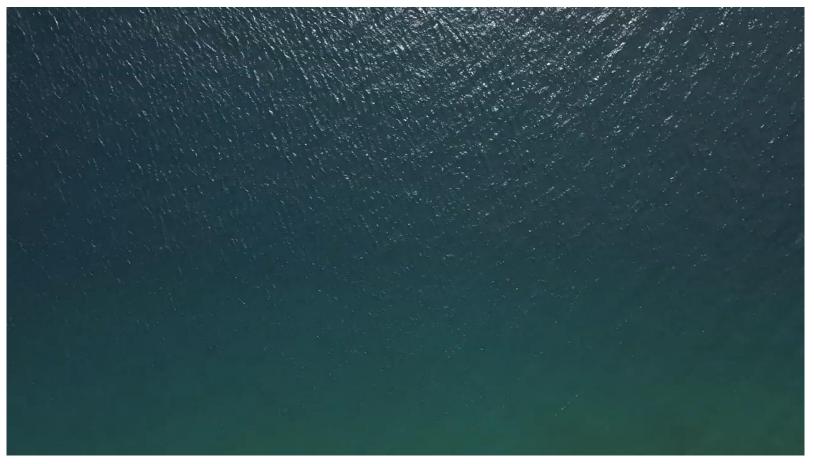
Technologies for litter treatment/transformation


Litter Treatment/ Transformation	Technology	Target	TRL
Agilyx Company	Polystyrene to styrene monomer technology	management	7-System prototype demonstration in operational environment
Recycled park	Floating platforms to retrieve plastic waste		7-System prototype demonstration in operational environment
Lindenau WRS-System	Onboard waste recycling technology	-	9-actual system proven in operational environment
Bioclean	Naturally derived polymers technologies	Waste water treatments, sea	3 - Experimental proof of concept
Sea Litter Critters	thermally treatment device with plasma technology	Near shores, tourist facilities, on board waste treatment	5- Technology validated in relevant environment
Plastic Odyssey	Boat	on board waste treatment	2 – technology concept formulated.
Seawer	Recycling	Ocean open waters	2- Technology concept formulated
SeeElefant	Collecting and Recycling	Ocean, open waters	3 - Experimental proof of concept
PacMan	Collecting and recycling	Ocean, open waters	3 - Experimental proof of concept

SIIDE 35 / 29 Source: CLAIM Project https://www.claim-nzuzuproject.eu/

Drift-dispersion models

- Forecasting plastic pollution (micro/macro)
- Identify hot-spot areas (micro/macro)
- Contribute to Fostering an ecosystem approach



Slide 36 / 29

CLEAN TRASH system

CLAIM's Litter Entrapping Autonomous Network Tactical Recovery Accumulation System Hellas

Slide 37 / 29

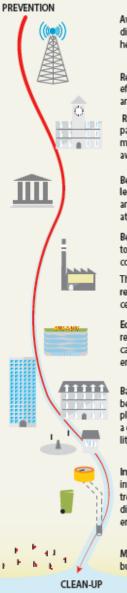
CLAIM's pyroliser

Slide 38 / 29

CLAIM's pyroliser

Thank you very much!

ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΠΛΟΙΟΚΤΗΤΩΝ ΜΕΣΗΣ ΑΛΙΕΙΑΣ PANHELLENIC UNION OF MIDDLE RANGE FISHERIES SHIP OWNERS


Marine litter

Source: Hyan, A Brier History of Manne Litter Research, in M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Berlin Springer, 2015; Plastics Europe

Slide 41 / 29 Marine litter: Vital graphics

Preventing is better than cleaning up

Awareness raising activities among distributors/retailers and consumers can help avoid the generation of marine litter

Research to improve product design and efficiency of processes can prevent waste, and improve recycling and resource efficiency

Research to improve knowledge on sources, pathways and fate to improve existing measures and regulations and enable awareness and attitude change.

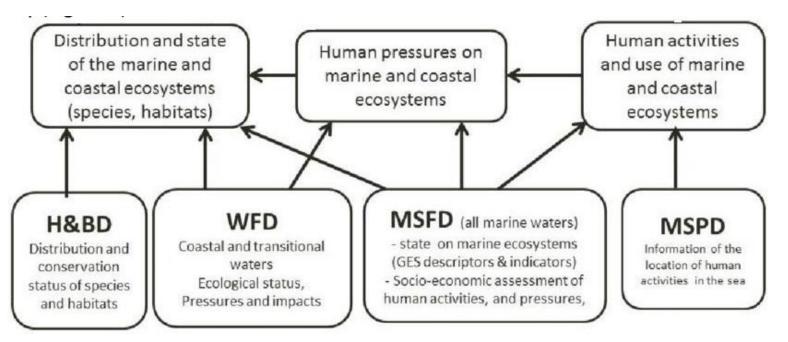
Better implementation of existing legislation on the release of litter, on land and at sea, helps to reduce marine litter at source

Behavioural and system changes leading towards more sustainable production and consumption patterns

The application of extended producer responsibility (EPR) can help to avoid certain types of marine litter

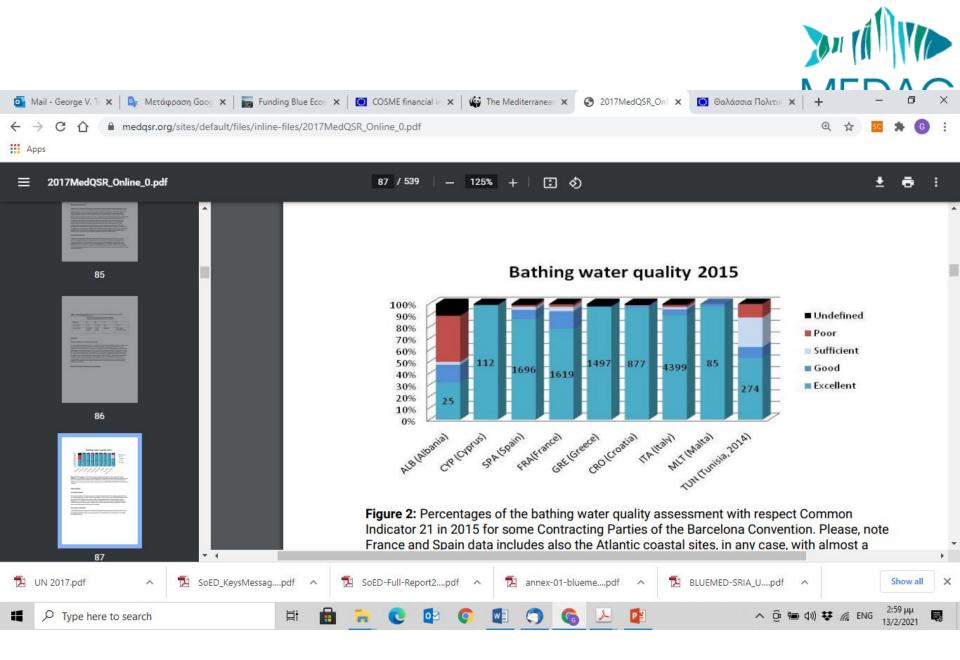
Economic Incentives, such as deposit refund schemes and plastic bag charges, can influence consumer choice and/or encourage different habits

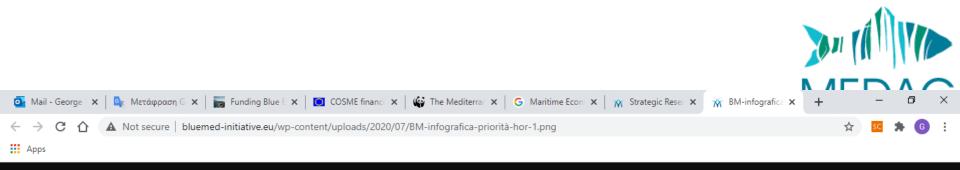
Bans (e.g. on plastic bags, smoking on beaches, plastic blasting in shipyards or plastic microbeads in cosmetics) can provide a cost-effective solution to avoiding marine litter


Investment in waste management infrastructure and wastewater treatment facilities can avoid dispersion of litter in the marine environment

Marine litter clean-ups are costly but necessary downstream actions

Fishing for litter can be a useful final option, but can only address certain types of marine litter





: Overview of the linkages between the MSFD, WFD, the H&BD and the MSPD illustrating how the assessments and data produced by these directives can feed into each other (source: Boon et al, 2015).

Slide 42 / 29

Slide 43 / 29

PB

Ľ.

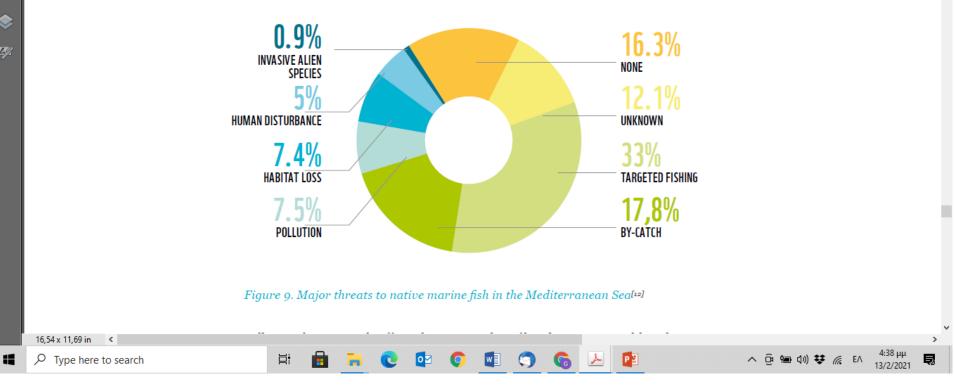
:43 µµ

/2/2021

5

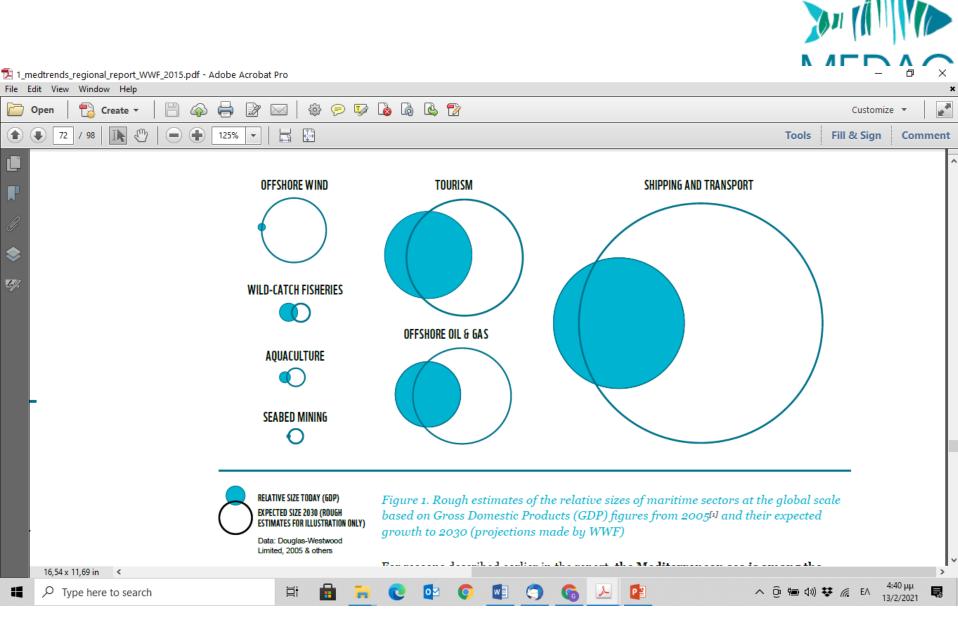
UFM_file-library-6a65882258329c143c28_2021.pdf

Slide 44 / 29


Type here to search

Ω

1_medtrends_regional_report_WWF_2015.pdf - Adobe Acrobat Pro	- 0 ×
File Edit View Window Help	
🗁 Open 🛛 🔁 Create 🗸 📄 🎧 🖨 📝 🖂 🏽 🏟 🖻 🕏 🕼 🧟 🦉	Customize 👻
1 / 98 IN (1) = 125% • E	Tools Fill & Sign Comment


Together with overfishing and marine habitat degradation, pollution constitutes a major challenge for fisheries in the Mediterranean region. According to IUCN, it affects 7.5% of native marine fish in the Mediterranean.

Major threats to native marine fish in the Mediterranean Sea

Slide 45 / 29

F

Rough estimates of the relative sizes of maritime sectors at the global scale based on Gross Domestic Products (GDP) figures from 2005[1] and their expected growth to 2030 (projections made by WWF)

Slide 46 / 29

Quantified estimates	
Offshore oil production could increase by 60% between 2010 and 2020 at the Mediterranean regional level, rising from 0,7 mbd to 1,12 mbd.	
Offshore gas production could increase five-fold from 2010 to 2030, from 55 Mtoe/year to 250 Mtoe/year at the Mediterranean regional level.	
4% per annum growth rate in global trade over the next decade can be anticipated and will be reflected on international maritime traffic routes at the Mediterranean regional level (Suez- Gibraltar axis, Aegean Sea, Adriatic Sea, and to a lesser extent the North-Western Mediterranean)	Future trends of
A downward trend is expected at an uncertain rate at the	
Mediterranean regional level.	maritime sectors
An upward trend is expected at an uncertain rate in the Mediterranean countries of the EU.	
Forecast of fish aquaculture production in the Mediterranean countries of the EU anticipates a 112% increase between 2010 and 2030 . Production should jump from 280 000 tonnes to nearly 600 000 tonnes.	Compatibility between sectors and potential risks of conflicting interests
International tourist arrivals in the Mediterranean should increase by 60% between 2015 and 2030 to reach 500 million arrivals in 2030 at the Mediterranean regional level. France, Italy and Spain will remain the three biggest destinations.	
While no marine renewable energy was produced in 2014, predicted production of electricity by offshore wind farms could reach 12 gigawatts (GW) in 2030 in the Mediterranean countries of the EU.	
An upward trend is expected at an uncertain rate in the mid- term, mainly in the Mediterranean countries of the EU	
5,000 km of additional coastline will be artificialised by 2025 as compared to the 2005 situation at the Mediterranean regional level.	
 In the Mediterranean countries of the EU: Pollution from wastewater is expected to keep decreasing over the next 15 years. Persistent Organic Pollutants (POPs) are expected to slowly decline. An upward trend in heavy metal pollution can be observed for mercury and lead. 	
 Nutrient discharges are expected to increase slightly over the next 15 years. 	f the Meditorranean See: Actions for a Sustainable
	mercury and lead. • Nutrient discharges are expected to increase slightly over the

Future trends of maritime sectors